Broadband photomultiplication organic photodetectors†
Abstract
Broadband photomultiplication organic photodetectors (PMOPDs) can be achieved with a double-layered active layer prepared from IEICO-4F : PBDB-T blend solutions with different weight ratios (1 : 1 or 3 : 100, wt/wt). The response range of the double-layered PMOPDs covers from 310 nm to 930 nm, determined by the photon harvesting range of the IEICO-4F : PBDB-T (1 : 1, wt/wt) layer. The IEICO-4F : PBDB-T (3 : 100, wt/wt) layer was used as a PM layer in the double-layered PMOPDs, achieving external quantum efficiency (EQE) more than 100% based on the work mechanism of trap-assisted hole tunneling injection. The trapped electrons in PBDB-T/IEICO-4F/PBDB-T near the Al electrode will makeinterfacial-band-bending to narrow the injection barrier, resulting in hole-tunneling-injection from the external circuit. The polymer PBDB-T can provide an efficient charge transport channel for the injected hole from the external circuit. The specific detectivity (D*) and responsivity (R) of the double-layered PMOPDs are 1.05 ± 0.03 × 1012 Jones and 0.94 ± 0.03 A W−1 at 810 nm under a −10 V bias, respectively.