Issue 19, 2021

Theoretical and experimental insights into the effects of halogen composition on the thermal decomposition details, as well as the fire-suppressing mechanism and performance of CF3CX[double bond, length as m-dash]CH2 (X = F, Cl, Br)

Abstract

The mechanism of thermal decomposition and fire suppression, and the fire-extinguishing performance of HFO-1234yf, HCFO-1233xf and 2-BTP agents were investigated by using both experimental and theoretical methods. The different halogen atoms connected with the middle carbon atom result in the varied strength of C–X (X = F, Cl, Br) bonds, and thus different thermal stability of these agents, which could further affect the pyrolysis mechanism/products and the fire-extinguishing mechanism/performance of these agents. Owing to the generation of CF3˙, Cl˙ and Br˙ radicals, as well as some unsaturated small molecules produced by their pyrolysis, the HFO-1234yf, HCFO-1233xf and 2-BTP agents have minimum extinguishing concentrations (MECs) of 9.80 vol%, 7.28 vol% and 2.92 vol% (9.80 vol%, 7.28 vol% and 2.56 vol%) for suppressing propane-air (methane-air) flame, respectively, which are comparable to or even better than those of other hydrofluoroolefin (HFO) and hydrofluorocarbon (HFC) agents. Despite the contribution of directly produced Br˙ radicals, which have the lowest energy barrier and the highest efficiency in capturing free radicals, the Br˙ and CF3˙ radicals produced by the follow-up reactions with OH˙/H˙ radicals may also contribute a lot to the best fire-suppressing performance of 2-BTP. Due to the high reactivity of these unsaturated halogenated olefins and their pyrolysis products, exothermic reactions could occur between the original agents (or their pyrolysis products) and the OH˙/O: radicals, thus leading to the combustion-promotion effect of the HFO-1234yf, HCFO-1233xf and 2-BTP agents. The slightest combustion-promotion effect of the 2-BTP extinguishant may result from the easier generation and best performance of the Br˙ radicals, as well as the lowest energies released by the exothermic reactions.

Graphical abstract: Theoretical and experimental insights into the effects of halogen composition on the thermal decomposition details, as well as the fire-suppressing mechanism and performance of CF3CX [[double bond, length as m-dash]] CH2 (X = F, Cl, Br)

Supplementary files

Article information

Article type
Paper
Submitted
17 Nov 2020
Accepted
16 Apr 2021
First published
19 Apr 2021

Phys. Chem. Chem. Phys., 2021,23, 11411-11423

Theoretical and experimental insights into the effects of halogen composition on the thermal decomposition details, as well as the fire-suppressing mechanism and performance of CF3CX[double bond, length as m-dash]CH2 (X = F, Cl, Br)

S. Zhou, Q. Yang, H. Zhang and X. Zhou, Phys. Chem. Chem. Phys., 2021, 23, 11411 DOI: 10.1039/D0CP05956K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements