Collective structural properties of embedded molecular motors in functionalized metal–organic frameworks†
Abstract
Photo-responsive molecular motors incorporated in soft porous materials enable the amplification of the motion of individual motor units by employing their collective and cooperative behavior. Metal–organic frameworks (MOFs) provide in this regard, due to their structural diversity and modular assembly, a unique matrix to construct well-defined and systematically tunable molecular environments for the embedding of molecular motors. However, despite advances in the development of such photo-responsive functional materials, a thorough understanding of the governing interactions at the atomic scale has been missing so far, limiting the possibility of predicting and fully exploring the potential of these assembled machineries. Here, we present a conformational study to unravel the collective structural behavior and elucidate the impact of motor–motor interactions on the local and global properties of the scaffold. In particular, our work highlights the impact of full conversion of the embedded molecular motors on the overall network topology of the MotorMOF and thus acts as a benchmark for future studies to further explore the correlation of responsive building units with the resulting functionality of these hierarchical systems.