Issue 10, 2021

Pentagonal B2C monolayer with extremely high theoretical capacity for Li-/Na-ion batteries

Abstract

Recently, two-dimensional (2-D) materials with a Penta-atomic-configuration such as Penta-graphene have received considerable attention because of their potential applications in electronics, spintronics and ion batteries. Previously, Penta-graphene has been proposed as an excellent anode material for Li-/Na-ion batteries with a high theoretical capacity (1489 mA h g−1). Here, based on the first-principles calculations, we report that a new 2-D material namely Penta-B2C can become another excellent anode material with even higher theoretical capacity for Li-/Na-ion batteries than Penta-graphene. Our results demonstrate that Li/Na atoms can be stably adsorbed on Penta-B2C. Meanwhile, Penta-B2C shows metallic conductivity during the adsorption. Most strikingly, the theoretical capacities of Penta-B2C are as high as 1594 for Li and 2391 mA h g−1 for Na, which are superior to those of the most known 2-D anode materials. Especially, the Na theoretical capacity of Penta-B2C sets a new record among known 2-D anode materials. In addition, Penta-B2C possesses relatively low open-circuit voltage and a low diffusion barrier for ions, which are vital for anode materials. These results highly promise that Penta-B2C can be an excellent anode material with a fast charge/discharge rate and extremely high theoretical capacity for Li-/Na-ion batteries.

Graphical abstract: Pentagonal B2C monolayer with extremely high theoretical capacity for Li-/Na-ion batteries

Supplementary files

Article information

Article type
Paper
Submitted
09 Dec 2020
Accepted
22 Feb 2021
First published
23 Feb 2021

Phys. Chem. Chem. Phys., 2021,23, 6278-6285

Pentagonal B2C monolayer with extremely high theoretical capacity for Li-/Na-ion batteries

Z. Cheng, X. Zhang, H. Zhang, J. Gao, H. Liu, X. Yu, X. Dai, G. Liu and G. Chen, Phys. Chem. Chem. Phys., 2021, 23, 6278 DOI: 10.1039/D0CP06363K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements