Issue 9, 2021

Non-collinear antiferromagnetism to compensated ferrimagnetism in Ti(Fe1−xCox)2 (x = 0, 0.5 and 1) alloys: experiment and theory

Abstract

The manifestation of the structural and magnetic properties of Co substituted TiFe2 is investigated using powder X-ray diffraction, magnetization and density functional theory calculations. The alloys TiFe2 and TiFeCo crystallize in the hexagonal structure (P63/mmc) with a reduction in the lattice parameters of TiFeCo (by about 0.51% in a and 0.64% in c) when compared to TiFe2. On the other hand, TiCo2 crystallizes in the cubic structure (Fd[3 with combining macron]m). A structural transition from hexagonal to cubic is anticipated for a composition with x ∈ [0.5, 1]. The non-collinear antiferromagnetic (AFM) spin structure (formed by 6h Fe atoms) of TiFe2 with Néel temperature TN ∼ 275 K is reported at zero magnetic field H. Meanwhile, a magnetic field-induced collinear antiferromagnetic spin structure is suggested by magnetization measurements and supported by density functional theory calculations. The magnetization of TiFeCo shows a weak-ferromagnetic (FM)-like transition around 204 K, followed by a broad hump at 85.5 K and H = 200 Oe. Ferromagnetic interactions are weakened, causing the hump to disappear due to the possible transfer of electrons between Fe and Co. TiCo2 shows compensated ferrimagnetism with magnetization of the order of 10−5μB f.u.−1 and a linear increase of M with H at 5 K. The presence of a non-collinear AFM spin structure in TiFe2, a reduced magnetic moment in TiFeCo due to the charge transfer between Co and Fe, and compensated ferrimagnetism in TiCo2 promise a rich phase diagram of Ti(Fe1−xCox)2 alloys and the possible potential of these alloys for use in spintronics applications.

Graphical abstract: Non-collinear antiferromagnetism to compensated ferrimagnetism in Ti(Fe1−xCox)2 (x = 0, 0.5 and 1) alloys: experiment and theory

Article information

Article type
Paper
Submitted
09 Dec 2020
Accepted
08 Feb 2021
First published
08 Feb 2021

Phys. Chem. Chem. Phys., 2021,23, 5607-5614

Non-collinear antiferromagnetism to compensated ferrimagnetism in Ti(Fe1−xCox)2 (x = 0, 0.5 and 1) alloys: experiment and theory

S. S. Samatham, A. K. Patel, A. V. Lukoyanov, K. G. Suresh and R. Nirmala, Phys. Chem. Chem. Phys., 2021, 23, 5607 DOI: 10.1039/D0CP06368A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements