Issue 4, 2021

Hydrogen abstraction/addition reactions in soot surface growth

Abstract

The hydrogen abstraction (HB) and addition reactions (HD) by H radicals are examined on a series of polycyclic aromatic hydrocarbon (PAH) monomers and models of quasi-surfaces using quasi-classical trajectory (QCT) method. QCT results reproduce the rate constants of HB reactions on PAH monomers from density functional theory (DFT) in the range of 1500–2700 K. The PAH size has a minor impact on the rates of HB reactions, especially at temperatures beyond 2100 K. In contrast, HD reactions have a clear size dependence, and a larger PAH yields a higher rate. It was also found that the preferred reaction pathway changes from HB to HD reactions at ∼1900 K. The rates of surface HB and HD reactions exceed those in the gas phase by nearly one factor of magnitude. Further analysis of the detailed trajectory of the QCT method reveals that about 50% of surface reactions can be attributed to the events of surface diffusion, which depends on the local energy transfer in gas-surface interactions. However, this phenomenon is not preferred in PAH monomers, as expected. Our finding here questions the treatment of the surface reactions of soot as the product of the first collision between the gaseous species and particle surface. The surface diffusion-induced reactions should be accounted for in the rates of the surface HB and HD reactions. The rate constants of HB and HD reactions on each reactive site (surface zig-zag, surface free-edge and pocket free-edge sites) were calculated by QCT method, and are recommended for the further development of surface chemistry models in soot formation.

Graphical abstract: Hydrogen abstraction/addition reactions in soot surface growth

Supplementary files

Article information

Article type
Paper
Submitted
11 Dec 2020
Accepted
28 Dec 2020
First published
29 Dec 2020

Phys. Chem. Chem. Phys., 2021,23, 3071-3086

Hydrogen abstraction/addition reactions in soot surface growth

Q. Chu, B. Shi, H. Wang, D. Chen and L. Liao, Phys. Chem. Chem. Phys., 2021, 23, 3071 DOI: 10.1039/D0CP06406H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements