Issue 15, 2021

Experimental and theoretical assessment of protonated Hoogsteen 9-methylguanine–1-methylcytosine base-pair dissociation: kinetics within a statistical reaction framework

Abstract

We investigated the collision-induced dissociation (CID) reactions of a protonated Hoogsteen 9-methylguanine–1-methylcytosine base pair (HG-[9MG·1MC + H]+), which aims to address the mystery of the literature reported “anomaly” in product ion distributions and compare the kinetics of a Hoogsteen base pair with its Watson-Crick isomer WC-[9MG·1MC + H]+ (reported recently by Sun et al.; Phys. Chem. Chem. Phys., 2020, 22, 24986). Product ion cross sections and branching ratios were measured as a function of center-of-mass collision energy using guided-ion beam tandem mass spectrometry, from which base-pair dissociation energies were determined. Product structures and energetics were assessed using various theories, of which the composite DLPNO-CCSD(T)/aug-cc-pVTZ//ωB97XD/6-311++G(d,p) was adopted as the best-performing method for constructing a reaction potential energy surface. The statistical Rice–Ramsperger–Kassel–Marcus theory was found to provide a useful framework for rationalizing the dominating abundance of [1MC + H]+ over [9MG + H]+ in the fragment ions of HG-[9MG·1MC + H]+. The kinetics analysis proved the necessity for incorporating into kinetics modeling not only the static properties of reaction minima and transition states but more importantly, the kinetics of individual base-pair conformers that have formed in collisional activation. The analysis also pinpointed the origin of the statistical kinetics of HG-[9MG·1MC + H]+vs. the non-statistical behavior of WC-[9MG·1MC + H]+ in terms of their distinctively different intra-base-pair hydrogen-bonds and consequently the absence of proton transfer between the N1 position of 9MG and the N3′ of 1MC in the Hoogsteen base pair. Finally, the Hoogsteen base pair was examined in the presence of a water ligand, i.e., HG-[9MG·1MC + H]+·H2O. Besides the same type of base-pair dissociation as detected in dry HG-[9MG·1MC + H]+, secondary methanol elimination was observed via the SN2 reaction of water with nucleobase methyl groups.

Graphical abstract: Experimental and theoretical assessment of protonated Hoogsteen 9-methylguanine–1-methylcytosine base-pair dissociation: kinetics within a statistical reaction framework

Supplementary files

Article information

Article type
Paper
Submitted
28 Dec 2020
Accepted
23 Feb 2021
First published
23 Feb 2021

Phys. Chem. Chem. Phys., 2021,23, 9365-9380

Author version available

Experimental and theoretical assessment of protonated Hoogsteen 9-methylguanine–1-methylcytosine base-pair dissociation: kinetics within a statistical reaction framework

M. M. Moe, J. Benny, Y. Sun and J. Liu, Phys. Chem. Chem. Phys., 2021, 23, 9365 DOI: 10.1039/D0CP06682F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements