57Fe-Enrichment effect on the composition and performance of Fe-based O2-reduction electrocatalysts†
Abstract
Pt-group metal (PGM)-free catalysts of the Me–N–C type based on abundant and inexpensive elements have gained importance in the field of oxygen reduction reaction (ORR) electrocatalysis due to their promising ORR-activities. Their insufficient stability, however, has fueled the interest in obtaining an in-depth understanding of their composition, which requires highly sensitive techniques compatible with their low metal contents (typically <5 wt%). In the particular context of iron-based materials, 57Fe-Mössbauer spectroscopy is often used to provide such compositional information, but requires (partially) 57Fe-enriched precursors. As a consequence, the extrapolation of conclusions drawn from Mössbauer measurements on 57Fe-enriched catalysts to equivalent materials with the standard isotope distribution relies on the assumption that the metal precursor's isotopic profile does not affect the catalysts’ composition and ORR-activity. To verify this hypothesis, in this study we prepared two series of Fe-based catalysts using distinctively different synthesis approaches and various relative contents of 57Fe-enriched precursors, and observed that the extent of the latter parameter significantly affected the catalysts’ ORR-activity. This effect was successfully correlated with the Fe-speciation of the catalysts inferred from the characterization of these samples with Mössbauer and X-ray absorption spectroscopies. Ultimately, these results highlight the crucial importance of verifying the consistency of the catalysts’ activity and composition upon comparing standard and 57Fe-enriched samples.
- This article is part of the themed collection: 2021 PCCP HOT Articles