Issue 32, 2021

Induced half-metallic characteristics and enhanced magnetic anisotropy in the two-dimensional Janus V2I3Br3 monolayer by graphyne adsorption

Abstract

The recent emergence of two-dimensional (2D) Janus materials has opened a new avenue for spintronic and optoelectronic applications. However, 2D magnetic Janus materials and Janus monolayer-based magnetic heterostructures are yet to be fully studied. Herein, the stability and electronic structure of 2D Janus V2I3Br3 and V2I3Cl3 monolayers, and the electronic and magnetic properties of 2D graphyne/Janus V2I3Br3 (γ-GY/V2I3Br3) heterostructures are calculated based on the density functional theory. Janus V2I3Br3 and V2I3Cl3 monolayers are ferromagnetic semiconductors with good stability and direct band gap. By combing the graphyne layer, the Janus V2I3Br3 monolayer shows half-metallic characteristics. The electrical conductivity of the Janus V2I3Br3 monolayer in γ-GY/V2I3Br3 heterostructures is further improved, which is very favorable for the applications of the γ-GY/V2I3Br3 heterostructure in battery anodes. Moreover, the Janus V2I3Br3 monolayer possesses a smaller perpendicular magnetic anisotropy (PMA), and the PMA can be effectively enhanced by combing γ-GY. Herein, the enhanced PMA was discovered to depend on the stacking patterns of γ-GY and V2I3Br3 monolayers. Biaxial strains can further affect the PMA of the γ-GY/V2I3Br3 heterostructure. Meanwhile, at a compressive strain, the Janus V2I3Br3 monolayer in the γ-GY/V2I3Br3 heterostructure realizes the transition from the magnetic half-metallic to the magnetic metal state. These results can enrich the applications and designs of γ-GY/V2I3Br3 magnetic heterostructures in spintronic devices and energy fields.

Graphical abstract: Induced half-metallic characteristics and enhanced magnetic anisotropy in the two-dimensional Janus V2I3Br3 monolayer by graphyne adsorption

Supplementary files

Article information

Article type
Paper
Submitted
27 May 2021
Accepted
22 Jul 2021
First published
22 Jul 2021

Phys. Chem. Chem. Phys., 2021,23, 17338-17347

Induced half-metallic characteristics and enhanced magnetic anisotropy in the two-dimensional Janus V2I3Br3 monolayer by graphyne adsorption

N. Sun, X. Wang and W. Mi, Phys. Chem. Chem. Phys., 2021, 23, 17338 DOI: 10.1039/D1CP02344F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements