Issue 31, 2021

Structural effects on the bromination rate and selectivity of alkylbenzenes and alkoxybenzenes in aqueous solution

Abstract

Aqueous free bromine species (e.g., HOBr, BrCl, Br2, BrOCl, Br2O, and H2OBr+) can react with activated aromatic compounds via electrophilic aromatic substitution to generate products with industrial applications, environmental consequences, and potentially adverse biological effects. The relative contributions of these brominating agents to overall bromination rates can be calculated via nonlinear regression analyses of kinetic data collected under a variety of solution conditions, including variations in parameters (e.g., [Cl], [Br], and pH) known to influence free bromine speciation. Herein, kinetic experiments conducted in batch reactors were employed to evaluate the contributions of steric and electronic effects on bromination of monosubstituted alkylbenzenes (ethyl, isopropyl, tert-butyl) and alkoxybenzenes (ethoxy, isopropoxy, tert-butoxy) and to elucidate the inherent reactivities of aqueous brominating agents towards these aromatic compounds. For bromination at the para position of alkylbenzenes, overall reactivity increased from tert-butyl < ethyl ≈ isopropyl. For bromination at the para position of alkoxybenzenes, reactivity increased from tert-butoxy < ethoxy < isopropoxy. In going from ethyl to tert-butyl and ethoxy to isopropoxy, unfavorable steric effects attenuated the favorable electronic effects imparted by the substituents. When comparing unsubstituted benzene, alkyl-, and alkoxybenzenes, the structure of the substituent has a significant effect on bromination rates, nucleophile regioselectivity, and electrophile chemoselectivity. Hirshfeld charges were useful predictors of reactivity and regioselectivity. The experimental results were also modeled using Taft equations. Collectively, these findings indicate that steric effects, electronic effects, and brominating agents other than HOBr can influence aromatic compound bromination in solutions of free bromine.

Graphical abstract: Structural effects on the bromination rate and selectivity of alkylbenzenes and alkoxybenzenes in aqueous solution

Supplementary files

Article information

Article type
Paper
Submitted
01 Jun 2021
Accepted
22 Jul 2021
First published
28 Jul 2021

Phys. Chem. Chem. Phys., 2021,23, 16594-16610

Author version available

Structural effects on the bromination rate and selectivity of alkylbenzenes and alkoxybenzenes in aqueous solution

M. H. Schammel, K. R. Martin-Culet, G. A. Taggart and J. D. Sivey, Phys. Chem. Chem. Phys., 2021, 23, 16594 DOI: 10.1039/D1CP02422A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements