A first principles study of p-type doping in two dimensional GaN
Abstract
Similar to most semiconductors, low-dimensional GaN materials also have the problem of asymmetric doping, that is, it is quite difficult to form p-type conductivity compared to n-type conductivity. Here, we have discussed the geometry, structure, and electronic defect properties of a two-dimensional graphene-like gallium nitride (g-GaN) monolayer belonging to the group III–V compounds, doped with different elements (In, Mg, Zn) at the Ga site. Based on first principles calculations, we found that substituting Ga (low concentration impurities) with Mg would be a better choice for fabricating a p-type doping semiconductor under N-rich conditions, which is essential for understanding the properties of impurity defects and intrinsic defects in the g-GaN monolayer (using the “transfer to real state” model). Moreover, the g-GaN monolayer is dynamically stable and can remain stable even in high-temperature conditions. This research provides insight for increasing the hole concentration and preparing potential high-performance optoelectronic devices using low-dimensional GaN materials.
- This article is part of the themed collection: 2021 PCCP HOT Articles