Photoluminescence and magnetism integrated multifunctional black phosphorus probes through controllable PO bond orbital hybridization†
Abstract
Biological probes with integrated photoluminescence and magnetism characteristics play a critical role in modern clinical diagnosis and surgical protocols combining fluorescence optical imaging (FOI) with magnetic resonance imaging (MRI) technology. However, traditional magnetic semiconductors can easily generate a spin splitting at the Fermi level and half-metallic electronic occupation, which will sharply reduce the radiation recombination efficiency of photogenerated carriers. To overcome this intrinsic contradiction, we propose a controllable oxidation strategy to introduce some particular PO bonds into black phosphorus nanosheets, in which the p orbital hybridization between P and O atoms not only provides some carrier recombination centers but also leads to a room-temperature spin polarization. As a result, the coexistence of photoluminescence and magnetism is realized in multifunctional black phosphorus probes with excellent biocompatibility. This work provides a new insight into integrating photoluminescence and magnetism together by intriguing atomic orbital hybridization.