Issue 43, 2021

Tunable biological nonvolatile multilevel data storage devices

Abstract

The speed with which electronic products are updated is continuously increasing. Consequently, since waste electronic products can cause serious environmental pollution, the demand for electronic products made of biological materials is becoming increasingly urgent. Although biological memristors have significant advantages, their electrical characteristics still do not meet the requirements to be used in future nonvolatile memories. Therefore, how to control their electrical characteristics has become a popular topic of research. In this study, tunable biomemristors with an Al/tussah blood (TB)-carbon nanotube (CNT)/indium tin oxide (ITO)/glass structure were fabricated. Such a device exhibits stable bipolar resistance switching behavior and good retention characteristics (104 s). Experimental results show that the ON/OFF current ratio can be effectively controlled by modifying the CNT concentration in the TB-CNT composite film. Multilevel (8 levels, 3 bits per cell) storage capabilities can be achieved in the device by controlling its compliance current in order to achieve high-density storage. The resistance switching behavior originates from the formation and rupture of conductive oxygen vacancy filaments. TB is a promising natural biomaterial in the field of green electronics, and this research could blaze a new trail for the development of biological memory devices. Biomemristors with multilevel resistance states can be used as electronic synapses and are one of the choices for simulating biological synapses.

Graphical abstract: Tunable biological nonvolatile multilevel data storage devices

Article information

Article type
Paper
Submitted
08 Oct 2021
Accepted
26 Oct 2021
First published
30 Oct 2021

Phys. Chem. Chem. Phys., 2021,23, 24834-24841

Tunable biological nonvolatile multilevel data storage devices

L. Wang, Y. Wang and D. Wen, Phys. Chem. Chem. Phys., 2021, 23, 24834 DOI: 10.1039/D1CP04622E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements