On-surface synthesis of graphene nanostructures with π-magnetism†
Abstract
Graphene nanostructures (GNs) including graphene nanoribbons and nanoflakes have attracted tremendous interest in the field of chemistry and materials science due to their fascinating electronic, optical and magnetic properties. Among them, zigzag-edged GNs (ZGNs) with precisely-tunable π-magnetism hold great potential for applications in spintronics and quantum devices. To improve the stability and processability of ZGNs, substitutional groups are often introduced to protect the reactive edges in organic synthesis, which renders the study of their intrinsic properties difficult. In contrast to the conventional wet-chemistry method, on-surface bottom-up synthesis presents a promising approach for the fabrication of both unsubstituted ZGNs and functionalized ZGNs with atomic precision via surface-catalyzed transformation of rationally-designed precursors. The structural and spin-polarized electronic properties of these ZGNs can then be characterized with sub-molecular resolution by means of scanning probe microscopy techniques. This review aims to highlight recent advances in the on-surface synthesis and characterization of a diversity of ZGNs with π-magnetism. We also discuss the important role of precursor design and reaction stimuli in the on-surface synthesis of ZGNs and their π-magnetism origin. Finally, we will highlight the existing challenges and future perspective surrounding the synthesis of novel open-shell ZGNs towards next-generation quantum technology.