Issue 10, 2021

Insights into electrocatalysis by scanning tunnelling microscopy

Abstract

Understanding the mechanism of electrocatalytic reaction is important for the design and development of highly efficient electrocatalysts for energy technology. Investigating the surface structures of electrocatalysts and the surface processes in electrocatalytic reactions at the atomic and molecular scale is helpful to identify the catalytic role of active sites and further promotes the development of emerging electrocatalysts. Since it was invented, scanning tunnelling microscopy (STM) has become a powerful technique to investigate surface topographies and electronic properties at the nanoscale resolution. STM can be operated in diversified environments. Electrochemical STM can be used to investigate the surface processes during electrochemical reactions. Moreover, the critical intermediates in catalysis on catalyst surfaces can be identified by STM at low temperature or ultrahigh vacuum. STM has been extensively utilized in electrocatalysis research, including the structure–activity relationship of electrocatalysts, the distribution of active sites, and surface processes in electrocatalytic reactions. In this review, progress in the application of STM in electrocatalysis is systematically discussed. The construction of model electrocatalysts and electrocatalytic systems are summarized. Then, we present the STM investigation of electrocatalyst structures and surface processes related to electrocatalysis. Challenges and future developments in the field are discussed in the outlook.

Graphical abstract: Insights into electrocatalysis by scanning tunnelling microscopy

Article information

Article type
Tutorial Review
Submitted
06 Dec 2020
First published
06 Apr 2021

Chem. Soc. Rev., 2021,50, 5832-5849

Insights into electrocatalysis by scanning tunnelling microscopy

X. Wang, Y. Wang, Y. Feng, D. Wang and L. Wan, Chem. Soc. Rev., 2021, 50, 5832 DOI: 10.1039/D0CS01078B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements