Carbocatalysis with pristine graphite: on-surface nanochemistry assists solution-based catalysis
Abstract
Carbocatalysis holds a privileged position as a sustainable alternative to metal-based catalysis. While the focus in solution-based catalytic processes generally lies on how the heterogeneous catalyst affects the solution composition, more attention has recently been given to the analysis of the carbon material itself. Various outstanding surface characterisation techniques, efficient in assessing the catalyst on-surface composition, are now available. These include high-resolution imaging tools such as scanning tunneling microscopy (STM), capable of bringing new insights into the processes determining rate and selectivity effects induced by carbocatalysts. In this regard, the use of self-assembly on graphite as a strategy to direct the outcome of chemical reactions has already shown great potential. This promising approach gives the scientific community the exciting prospect of rationalising selectivity in carbocatalysis with pristine graphite by linking in-solution and on-surface composition.