Issue 21, 2021

Localized surface plasmon resonance for enhanced electrocatalysis

Abstract

Electrocatalysis plays a vital role in energy conversion and storage in modern society. Localized surface plasmon resonance (LSPR) is a highly attractive approach to enhance the electrocatalytic activity and selectivity with solar energy. LSPR excitation can induce the transfer of hot electrons and holes, electromagnetic field enhancement, lattice heating, resonant energy transfer and scattering, in turn boosting a variety of electrocatalytic reactions. Although the LSPR-mediated electrocatalysis has been investigated, the underlying mechanism has not been well explained. Moreover, the efficiency is strongly dependent on the structure and composition of plasmonic metals. In this review, the currently proposed mechanisms for plasmon-mediated electrocatalysis are introduced and the preparation methods to design supported plasmonic nanostructures and related electrodes are summarized. In addition, we focus on the characterization strategies used for verifying and differentiating LSPR mechanisms involved at the electrochemical interface. Following that are highlights of representative examples of direct plasmonic metal-driven and indirect plasmon-enhanced electrocatalytic reactions. Finally, this review concludes with a discussion on the remaining challenges and future opportunities for coupling LSPR with electrocatalysis.

Graphical abstract: Localized surface plasmon resonance for enhanced electrocatalysis

Article information

Article type
Review Article
Submitted
19 Mar 2021
First published
17 Sep 2021

Chem. Soc. Rev., 2021,50, 12070-12097

Localized surface plasmon resonance for enhanced electrocatalysis

J. Zhao, S. Xue, R. Ji, B. Li and J. Li, Chem. Soc. Rev., 2021, 50, 12070 DOI: 10.1039/D1CS00237F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements