Issue 24, 2021

Designed pincer ligand supported Co(ii)-based catalysts for dehydrogenative activation of alcohols: Studies on N-alkylation of amines, α-alkylation of ketones and synthesis of quinolines

Abstract

Base-metal catalysts Co1, Co2 and Co3 were synthesized from designed pincer ligands L1, L2 and L3 having NNN donor atoms respectively. Co1, Co2 and Co3 were characterized by IR, UV–Vis. and ESI-MS spectroscopic studies. Single crystal X-ray diffraction studies were investigated to authenticate the molecular structures of Co1 and Co3. Catalysts Co1, Co2 and Co3 were utilized to study the dehydrogenative activation of alcohols for N-alkylation of amines, α-alkylation of ketones and synthesis of quinolines. Under optimized reaction conditions, a broad range of substrates including alcohols, anilines and ketones were exploited. A series of control experiments for N-alkylation of amines, α-alkylation of ketones and synthesis of quinolines were examined to understand the reaction pathway. ESI-MS spectral studies were investigated to characterize cobalt-alkoxide and cobalt-hydride intermediates. Reduction of styrene by evolved hydrogen gas during the reaction was investigated to authenticate the dehydrogenative nature of the catalysts. Probable reaction pathways were proposed for N-alkylation of amines, α-alkylation of ketones and synthesis of quinolines on the basis of control experiments and detection of reaction intermediates.

Graphical abstract: Designed pincer ligand supported Co(ii)-based catalysts for dehydrogenative activation of alcohols: Studies on N-alkylation of amines, α-alkylation of ketones and synthesis of quinolines

Supplementary files

Article information

Article type
Paper
Submitted
31 Oct 2020
Accepted
06 Apr 2021
First published
06 Apr 2021

Dalton Trans., 2021,50, 8567-8587

Designed pincer ligand supported Co(II)-based catalysts for dehydrogenative activation of alcohols: Studies on N-alkylation of amines, α-alkylation of ketones and synthesis of quinolines

A. Singh, A. Maji, M. Joshi, A. R. Choudhury and K. Ghosh, Dalton Trans., 2021, 50, 8567 DOI: 10.1039/D0DT03748F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements