Issue 29, 2021

NMR and luminescence experiments reveal the structure and symmetry adaptation of a europium ionic liquid to solvent polarity

Abstract

By combining NMR data (nuclear Overhauser effect and pseudocontact shifts) with luminescence measurements, we uncover how the structure of an anionic europium complex adapts to different solvent polarities as a result of the different relative proximities of the ion pairs. In nonpolar solvents, the detected contact ion pairs, CIPs, indicate that the ions remain in proximity, with the molecular cation, and then perturbing and distorting the coordination polyhedron of the anion complex to a low symmetry configuration, which promotes luminescence. Differently, solvent separated ion pairs occur in polar solvents, indicating that the molecular ions have been disconnected. Thus, in polar solvents, the europium complex anion becomes free from the close influence of the molecular cation, allowing the coordination polyhedron to increase its symmetry, which in turn reduces the luminescence of the anionic europium complex. This reduction of coordination polyhedron symmetry by the close proximity of the molecular cation in nonpolar solvents was confirmed by additional photophysical measurements combined with quantum chemical RM1 calculations, suggesting that, in nonpolar solvents, the symmetry point group of the coordination polyhedron is C1, whereas in polar solvents it is either D2d or S4. The nonpolar solvents used were benzene, chloroform and dichloromethane; and the polar ones were acetone and acetonitrile. The synthesized ionic liquids were tetrakis [C5mim][La(BTFA)4] and [C5mim][Eu(BTFA)4], where BTFA stands for 4,4,4-trifluoro-1-phenyl-1,3-butanedione, lanthanoids (La3+ and Eu3+) and C5mim stands for 1-methyl-3-isopentylimidazolium. They were synthesized by a microwave methodology that is both fast and green (the synthetic reaction takes about 15 min) and also leads to more easily purifiable crystals.

Graphical abstract: NMR and luminescence experiments reveal the structure and symmetry adaptation of a europium ionic liquid to solvent polarity

Supplementary files

Article information

Article type
Paper
Submitted
29 Mar 2021
Accepted
15 Jun 2021
First published
15 Jun 2021

Dalton Trans., 2021,50, 10193-10205

NMR and luminescence experiments reveal the structure and symmetry adaptation of a europium ionic liquid to solvent polarity

G. P. Castro, L. L. L. S. Melo, F. Hallwass, S. M. C. Gonçalves and A. M. Simas, Dalton Trans., 2021, 50, 10193 DOI: 10.1039/D1DT01050F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements