Synthesis and characterisation of two lithium-thiocyanate solvates with tetrahydrofuran: Li[SCN]·THF and Li[SCN]·2THF†
Abstract
Li[SCN]·THF and Li[SCN]·2THF can be obtained from solutions of anhydrous Li[SCN] in tetrahydrofuran (C4H8O, THF). Both compounds are very hygroscopic and slowly decompose even at room temperature. At ambient conditions Li[SCN]·THF crystallizes in the monoclinic space group P21/c with the lattice parameters a = 574.41(2), b = 1643.11(6), c = 830.15(3) pm and β = 99.009(1)° for Z = 4 as determined by laboratory X-ray powder diffraction. Its crystal structure contains Li+ cations surrounded by one THF molecule and three thiocyanate anions [SCN]− forming {Li[NCS]2[SCN](OC4H8)}2− tetrahedra, which join together as pairs via shared N⋯N edges. CHNS combustion analysis and vibrational spectroscopy confirmed its composition, whereas differential scanning calorimetry and thermogravimetric analysis coupled with a mass spectrometer were applied to record its thermal behaviour. Li[SCN]·2THF crystallises in a primitive monoclinic lattice as well, but in the space group P21/n with the lattice parameters a = 1132.73(3), b = 1637.98(3), c = 1264.88(2) pm and β = 94.393(2)° for Z = 8 as determined from single-crystal X-ray diffraction data at 100 K. Its structure contains two crystallographically independent Li+-centred tetrahedra {Li[NCS]2(OC4H8)2}−, which form dimers {(C4H8O)2Li[μ2-NCS]2Li(OC4H8)2} via shared N⋯N edges. They are merely stabilised by weak agostic H⋯S interactions between some CH2-groups of the C4H8O molecules and the [NCS]− ligands.