Phosphorus-based ligand effects on the structure and radical scavenging ability of molecular nanoparticles of CeO2†
Abstract
Two new CeIV/O2− clusters, (pyH)8[Ce10O4(OH)4(O3PPh)12(NO3)12] (1) and [Ce6O4(OH)4(O2PPh2)4(O2CtBu)8] (2), have been prepared that contain P-based ligands for the first time. They were obtained from the reaction of (NH4)2[Ce(NO3)6], PhPO3H2 or Ph2PO2H, and tBuCO2H in a 2 : 1 : 2 molar ratio in pyridine/MeOH (10 : 1 mL). Both compounds contain a {Ce6O4(OH)4} face-capped octahedral core, with 1 containing an additional four CeIV on the outside to give a supertetrahedral Ce10 topology; the {Ce6O8} unit is the smallest recognizable fragment of the fluorite structure of CeO2. The HO˙ radical scavenging activities of 1 and 2 were measured by UV/vis spectral monitoring of methylene blue oxidation by HO˙ radicals in the presence and absence of the Ce/O clusters, and the results compared with those for larger Ce24 and Ce38 molecular nanoparticles of CeO2 prepared in previous work. 1 and 2 are both very poor HO˙ radical scavengers compared with Ce24 and Ce38, a result that is consistent with reports in the literature that PO43− ions inhibit the radical scavenging ability of traditional CeO2 nanoparticles and putatively assigned to PO43− binding to the surface.