Issue 48, 2021

Modulating the structure and photochromic performance of hybrid metal chlorides with nonphotochromic 1,10-phenanthroline and its derivative

Abstract

Hybrid photochromic materias (HPMs), especially crystalline HPMs (CHPMs), have been widely investigated due to their feasibility in maintaining the advantages of each constituent and genearating captivating photomodulated functionality. Metal–organic complexes (MOCs), as promising candidates for fabricating CHPMs, have attracted the interest of researchers. The molecular predesign of ligands plays a crucial role in yielding MOC-based CHPMs with tunable photochromic functionality. Hitherto, a great majority of CHPMs are driven by photosensitive ligands. However, the complicated synthesis and high cost of photosensitive ligands obviously prevent the macro-synthesis and future application of these CHPMs. Thus, it is indispensable to explore novel branches of CHPMs. Herein, we report a series of photochromic solid materials bearing modulated photochromic properties by hybridizing metal chlorides with a nonphotosensitive coplanar dipyridine unit 1,10-phenanthroline (phen) and its derivative 5-chloro-1,10-phenanthroline (5-Cl-phen). The resulting hybrids, [ZnCl2(phen)] (1), [CdCl2(phen)] (2), [PbCl2(phen)] (3), [ZnCl(H2O)(5-Cl-phen)2]Cl·2H2O (4), [Cd2Cl4(5-Cl-phen)2] (5) and [Pb2Cl4(5-Cl-phen)2] (6), exhibit distinct structures from the isolated molecular complexes (1 and 4) to the hybrid chain (2, 3, 5 and 6) because of the distinct coordination mode of central metal ions and chloride ions. After photo-irradiation with a Xe-lamp, all complexes, as expected, exhibited apparent color change because of the photoinduced electron transfer (ET) between coordinated chloride ions (Cl) as electron donors (EDs) and the coordinated coplanar phen and 5-Cl-phen species as electron acceptors (EAs). More importantly, the photochromic performance of the title complexes could be modulated by phen and 5-Cl-phen. This study provides a general and facile way for modulating the structure and photochromic performance of hybrid metal chlorides with phen or phen-based derivatives under the synergy of crystalline engineering strategy and ET mechanism.

Graphical abstract: Modulating the structure and photochromic performance of hybrid metal chlorides with nonphotochromic 1,10-phenanthroline and its derivative

Supplementary files

Article information

Article type
Paper
Submitted
28 Aug 2021
Accepted
11 Nov 2021
First published
11 Nov 2021

Dalton Trans., 2021,50, 18089-18096

Modulating the structure and photochromic performance of hybrid metal chlorides with nonphotochromic 1,10-phenanthroline and its derivative

F. Xu, G. Li, A. Wang, S. Han, J. Pan and G. Wang, Dalton Trans., 2021, 50, 18089 DOI: 10.1039/D1DT02899E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements