Issue 46, 2021

Room-temperature phosphorescence of manganese-based metal halides

Abstract

Room-temperature phosphorescent (RTP) materials can be used in anti-counterfeiting, organic light-emitting diodes and displays. However, designing RTP materials with a long luminescence lifetime and high solid-state emission efficiency is still a challenge. Due to the strong quantum confinement effect and the hydrogen bond network structure formed by polyamino sites, 0D RTP materials usually have a higher fluorescence quantum yield and longer phosphorescence lifetime. Here, we synthesized four manganese-based metal halides of different dimensions with a long lifetime and high luminous efficiency by changing organic cations: {[H2DAP]MnCl4}n (1, DAP = 1,3-propanediamine, 2D), {[(H2MELA)2MnCl5]Cl}n (2, MELA = melamine, 1D), [H2TAP]2MnCl6 (3, TAP = 2,4,6-triaminopyrimidine, 0D) and [H2MXD]2MnCl6 (4, MXD = m-xylylenediamine, 0D). [H2MXD]2MnCl6 (4) has a long lifetime (11 ms) and the maximum photoluminescence quantum yield (31.05%). Our work provides a new procedure for the development of RTP materials with high quantum yields.

Graphical abstract: Room-temperature phosphorescence of manganese-based metal halides

Supplementary files

Article information

Article type
Paper
Submitted
21 Sep 2021
Accepted
30 Oct 2021
First published
03 Nov 2021

Dalton Trans., 2021,50, 17275-17280

Room-temperature phosphorescence of manganese-based metal halides

Y. Zhang, D. Chen, K. Jin, S. Zang and Q. Wang, Dalton Trans., 2021, 50, 17275 DOI: 10.1039/D1DT03206B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements