Linear red/green ratiometric thermometry of Ho3+/Cr3+ co-doped red up-conversion tungstate materials†
Abstract
Existing optical thermometers are faced with the challenges of high sensitivity limited to a very narrow high temperature range, while also lacking low temperature sensing performance. A new linear up-conversion (UC) optical thermometer with high sensitivity over a wide temperature range was reported here. The introduction of Cr3+ optimized the red-green (R/G) ratio and improved the temperature sensing characteristics of Ho3+-doped tungstate materials. Notably, as a temperature-related parameter, the R/G emission intensity ratio of Ho3+/Cr3+ co-doped tungstate material fitted well linearly with temperature. The slope of the fitted line corresponded to the absolute sensitivity value; that is, the sensitivity was constantly 0.0217 K−1 over the wide range of 163–663 K. This new UC temperature sensor with high sensitivity extended a new field of optical temperature measurement and demonstrated the possibility of applying this linear sensitivity effect in sensing applications. Most importantly, from an optical temperature sensing point of view, this study provided a novel and effective strategy for linear optical temperature measurement.