Issue 1, 2021

Machine learning for high performance organic solar cells: current scenario and future prospects

Abstract

Machine learning (ML) is a field of computer science that uses algorithms and techniques for automating solutions to complex problems that are hard to program using conventional programming methods. Owing to the chemical versatility of organic building blocks, a large number of organic semi-conductors have been used for organic solar cells. Selecting a suitable organic semi-conductor is like searching for a needle in a haystack. Data-driven science, the fourth paradigm of science, has the potential to guide experimentalists to discover and develop new high-performance materials. The last decade has seen impressive progress in materials informatics and data science; however, data-driven molecular design of organic solar cell materials is still challenging. The data-analysis capability of machine learning methods is well known. This review is written about the use of machine learning methods for organic solar cell research. In this review, we have outlined the basics of machine learning and common procedures for applying machine learning. A brief introduction on different classes of machine learning algorithms as well as related software and tools is provided. Then, the current research status of machine learning in organic solar cells is reviewed. We have discussed the challenges in anticipating the data driven material design, such as the complexity metric of organic solar cells, diversity of chemical structures and necessary programming ability. We have also proposed some suggestions that can enhance the usefulness of machine learning for organic solar cell research enterprises.

Graphical abstract: Machine learning for high performance organic solar cells: current scenario and future prospects

Article information

Article type
Review Article
Submitted
04 Sep 2020
Accepted
25 Nov 2020
First published
26 Nov 2020

Energy Environ. Sci., 2021,14, 90-105

Machine learning for high performance organic solar cells: current scenario and future prospects

A. Mahmood and J. Wang, Energy Environ. Sci., 2021, 14, 90 DOI: 10.1039/D0EE02838J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements