Dynamic halide perovskite heterojunction generates direct current†
Abstract
Here, we demonstrate a dynamic perovskite device capable of converting mechanical energy into direct current (DC) electrical energy, combining two concepts: carrier generation from the triboelectric effect and carrier separation through band energy level difference. By analyzing and comparing different perovskite (FAPbI3, MAPbI3, MAPbBr3, PEA2PbI4, etc.) and charge transport layer (CTL) materials (spiro-MeOTAD, PTAA, TiO2, SnO2, etc.), the key rules for determining DC output and performances are identified: (1) a suitable band alignment (band position and bandgap) between perovskite and CTL can separate the carrier transfer; (2) a large difference in work function between two layers leads to high electrical potential difference; and (3) a high carrier concentration can enhance the DC power-generating performances. Furthermore, it is found that the light illumination acts as a stimulus to current output to a large extent, which is due to the coupling effect from triboelectric and photovoltaic effects. This study provides a set of key rules to explain the mechanism and to further improve the performance of the dynamic perovskite/CTL heterojunction.