Issue 4, 2021

Emerging dynamic structure of electrocatalysts unveiled by in situ X-ray diffraction/absorption spectroscopy

Abstract

Highly-efficient oxygen evolution reaction (OER) and reduction of carbon dioxide (CO2RR) represent the two biggest scientific challenges in artificial photosynthesis. Many efficient and cost-affordable electrocatalysts have been reported in the development of electrochemical OER and CO2RR; however, during the electro-derived oxidation or reduction processes, a critical fact that, most catalysts tend to undergo structural reconstruction and/or surface rearrangement, has been widely observed, which greatly subverts the traditional conception of “catalysts”. In this respect, the research trends have gradually transferred from optimizing catalyst materials to elucidating the real active sites of the catalysts as well as understanding the underlying mechanisms behind these complex reactions. Most importantly, the in situ/operando characterization techniques are powerful tools to achieve this goal. Herein, recent advances in the in situ X-ray diffraction and absorption spectroscopy that have provided a unique opportunity to investigate the structural reconstruction and/or surface rearrangement of catalysts under realistic OER and CO2RR conditions are thoroughly reviewed. Finally, the challenges of the material design are discussed, and the future perspective for developing next-generation catalysts with imperative requirements of material nature is provided.

Graphical abstract: Emerging dynamic structure of electrocatalysts unveiled by in situ X-ray diffraction/absorption spectroscopy

Article information

Article type
Review Article
Submitted
14 Dec 2020
Accepted
12 Feb 2021
First published
12 Feb 2021

Energy Environ. Sci., 2021,14, 1928-1958

Emerging dynamic structure of electrocatalysts unveiled by in situ X-ray diffraction/absorption spectroscopy

Y. Zhu, T. Kuo, Y. Li, M. Qi, G. Chen, J. Wang, Y. Xu and H. M. Chen, Energy Environ. Sci., 2021, 14, 1928 DOI: 10.1039/D0EE03903A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements