Issue 10, 2021

A donor polymer based on 3-cyanothiophene with superior batch-to-batch reproducibility for high-efficiency organic solar cells

Abstract

The realization of high-efficiency organic solar cells (OSCs) relies largely on donor polymers. However, high-performance donor polymers are limited to a handful of building blocks, which usually suffer from lengthy synthesis and high production cost. Moreover, most donor polymers exhibited strong batch-to-batch variation. Herein, we report a new building block, 3-cyanothiophene (CT), which features a very simple asymmetric structure and facile synthesis. The donor polymer (PBCT-2F) based on the CT unit realized a remarkable power conversion efficiency (PCE) of 17.1%. More importantly, PBCT-2F exhibited excellent batch-to-batch reproducibility. The six polymer batches with molecular weights ranging from 18 to 74 kDa produced very similar PCEs: 15.9–17.1% and 12.7–13.2% when the polymer was blended with Y6 and IT-4F, respectively. These results suggest the great potential of PBCT-2F for industrial synthesis and large-scale manufacturing of OSC modules. This work also demonstrates the bright future of CT units for constructing high-performance donor polymers.

Graphical abstract: A donor polymer based on 3-cyanothiophene with superior batch-to-batch reproducibility for high-efficiency organic solar cells

Supplementary files

Article information

Article type
Paper
Submitted
25 Jun 2021
Accepted
25 Aug 2021
First published
25 Aug 2021

Energy Environ. Sci., 2021,14, 5530-5540

A donor polymer based on 3-cyanothiophene with superior batch-to-batch reproducibility for high-efficiency organic solar cells

X. Yuan, Y. Zhao, T. Zhan, J. Oh, J. Zhou, J. Li, X. Wang, Z. Wang, S. Pang, P. Cai, C. Yang, Z. He, Z. Xie, C. Duan, F. Huang and Y. Cao, Energy Environ. Sci., 2021, 14, 5530 DOI: 10.1039/D1EE01957K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements