Issue 10, 2021

Technological learning for resource efficient terawatt scale photovoltaics

Abstract

Cost efficient climate change mitigation requires installing a total of 20–80 TWp photovoltaics until 2050 and 80–170 TWp until 2100. The question is, whether the projected growth is feasible from a resource point of view – and if so, under which conditions. We assess demand for fundamental resources until the year 2100, which are necessary independently from the specific nature of the used PV technology, i.e. energy, float-glass, and capital investments, and addtionally silver. Without technological learning serious resource constraints will arise. On the other hand, continued technological learning at current rates would be sufficient to stay within reasonable boundaries. With such technological learning, energy demand for production will correspond to 2–5% of global energy consumption leading to cumulative greenhouse gas emissions of 4–11% of the 1.5 °C emission budget. Glass demand might still exceed current float-glass production, requiring capacity expansion; and silver consumption could be kept at current levels. Installations costs would be 300–600 billion $US2020 per year. Technological solutions enabling such learning are foreseeable, nevertheless current and future investments must not only be targeted at capacity expansion but also at upholding the currently high rate of innovation.

Graphical abstract: Technological learning for resource efficient terawatt scale photovoltaics

Article information

Article type
Analysis
Submitted
12 Aug 2021
Accepted
13 Sep 2021
First published
17 Sep 2021
This article is Open Access
Creative Commons BY-NC license

Energy Environ. Sci., 2021,14, 5147-5160

Technological learning for resource efficient terawatt scale photovoltaics

J. C. Goldschmidt, L. Wagner, R. Pietzcker and L. Friedrich, Energy Environ. Sci., 2021, 14, 5147 DOI: 10.1039/D1EE02497C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements