Issue 2, 2021

The identification of the major contributors in atmospheric particulate matter to oxidative stress using surrogate particles

Abstract

Oxidative stress is a unifying mechanism relating to the adverse effects induced by atmospheric particulate matter (PM). Owing to complex compositions, the role of PM constituents in triggering oxidative stress remains unclear. We employed synthetic particle suspensions with controlled sizes and compositions as PM surrogates to identify the key contributors to oxidative stress. The suspensions consisted of carbon black (CB) particles, polycyclic aromatic hydrocarbon adsorbed on CB, and dissolved metal ions. After the exposure of A549 or BEAS-2B cells to CB particles, the reactive oxygen species (ROS) level increased in a manner that was dependent on the size and concentration of the particles, in the order of 14 nm > 56 nm > 260 nm. Benzo[a]pyrene-coated CB also increased the ROS level, but not as much as the naked CB, and the benzo[a]pyrene-dione coating had no effect. The co-exposure of CB with one of the eight metal ions did not lead to any additional ROS increase. The results indicate that among the three major constituents, CB particles, and the small-sized ones in particular, contributed most to ROS generation. In mechanistic studies, damaged mitochondria cristae were observed, suggesting that mitochondria are one of the target organelles. Both naked and BaP-coated CB decreased the mitochondrial membrane potential and changed the mRNA expression of fusion/fission proteins. ROS inhibition experiments suggest that complex I of the mitochondria was involved, but complex III and the NADPH oxidase (NOX) system were not. It was thus postulated that small-sized particles could enter cells and disrupt the mitochondria, particularly complex I, leading to the elevated generation of ROS. Our work calls for more attention to be paid to the toxicity of the ultrafine fractions of PM.

Graphical abstract: The identification of the major contributors in atmospheric particulate matter to oxidative stress using surrogate particles

Supplementary files

Article information

Article type
Paper
Submitted
09 Nov 2020
Accepted
04 Jan 2021
First published
06 Jan 2021

Environ. Sci.: Nano, 2021,8, 527-542

The identification of the major contributors in atmospheric particulate matter to oxidative stress using surrogate particles

K. Zhao, M. Li, L. Zhao, N. Sang and L. Guo, Environ. Sci.: Nano, 2021, 8, 527 DOI: 10.1039/D0EN01102A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements