Issue 9, 2021

Catalytic gold nanostars for SERS-based detection of mercury ions (Hg2+) with inverse sensitivity

Abstract

Gold nanostars (AuNSt) exhibit outstanding catalytic and plasmonic properties derived from their nano-size and shape. Their ability to mimic natural enzymes is exploited herein to oxidise 3,3′,5,5′-tetramethybenzidine (TMB) into an oxidised product (oxTMB), a highly Raman-active compound. AuNSt with different surface coatings including sodium citrate (NaCit), polyethylene glycol (PEG), oligoethylene glycol (OEG) and 11-mercaptoundecanoic acid (11-MUA) were prepared and characterised both as catalysts and Raman enhancers. AuNSt-PEG showed the best results as SERS substrates for oxTMB, therefore being chosen for the detection of mercury ions (Hg2+). Hg is one of the most toxic elements known, and is a major environmental concern due to its adverse health effects. Hg is also known for forming amalgams with most metals, a property that is used in this study to alter the shape and size of AuNSt, thus limiting their Raman enhancement nature by amalgamating their sharp tips which are responsible for most SERS ‘hot spots’. As a result, the Raman peak of oxTMB at 1190 cm−1 shows an inverse linear dependence with increasing Hg2+ ion concentration. This approach achieved a limit of detection of 0.2 ppb in seawater (certified reference materials, CRM), and a linear response between 0.1 and 1000 ppb. Thus, this ground-breaking technique could contribute to the protection of water systems, aquaculture and human health, whilst providing a biosensing platform for numerous applications in the future.

Graphical abstract: Catalytic gold nanostars for SERS-based detection of mercury ions (Hg2+) with inverse sensitivity

Supplementary files

Article information

Article type
Paper
Submitted
15 Jun 2021
Accepted
17 Aug 2021
First published
17 Aug 2021
This article is Open Access
Creative Commons BY-NC license

Environ. Sci.: Nano, 2021,8, 2718-2730

Catalytic gold nanostars for SERS-based detection of mercury ions (Hg2+) with inverse sensitivity

N. Logan, J. Lou-Franco, C. Elliott and C. Cao, Environ. Sci.: Nano, 2021, 8, 2718 DOI: 10.1039/D1EN00548K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements