Start-up of bench-scale biofilters for manganese removal under tropical conditions: a comparative study using virgin pumice, silica sand, and anthracite filter media
Abstract
Biofiltration for Mn removal has not been proven in the tropics (18–29 °C). Also, the use of pumice as an alternative filter medium for Mn removal is still poorly known. In this study, a bench-scale biofiltration experiment, using virgin pumice, silica sand, and anthracite, was conducted for 107 days using tropical groundwater at 22 °C. Characterization of manganese oxide (MnOx) on filter media was carried out by Raman spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The ability of culturable bacteria to oxidize Mn was verified by the leucoberbelin blue dye assay (LBB). The microbial activity on filter media was studied by ATP analyses. Identification of the MOB was performed by 16S rRNA sequencing. Results showed that the ripening time in each column was similar (∼80 days); therefore, the filter media and water temperature do not seem to accelerate the start-up period. The MnOx present on all ripened media was of the birnessite type. The MnOx morphology, influent water parameters, and microbiological activity suggest a start-up period likely assisted by biological oxidation. Therefore, biofiltration for manganese removal is feasible under tropical conditions. The similarity in the performance of pumice with the other media confirmed its suitability for biotic Mn removal. All materials presented similar known MOB at the genus level; however, different closest related species colonized selectively the filter media. Two strains of Pseudoxanthomonas sp., a not recognized genus on matured biofilters, look promising as inoculums in pumice and sand. Proper application of biofiltration in the tropics needs operational and bioaugmentation strategies.
- This article is part of the themed collection: Celebrating Latin American Chemistry