iTRAQ-based quantitative proteomic analysis of the antimicrobial mechanism of lactobionic acid against Staphylococcus aureus
Abstract
Staphylococcus aureus is a common pathogenic microorganism that causes foodborne diseases. Lactobionic acid (LBA) is a natural polyhydroxy acid widely used in the food industry. To understand the antibacterial action of LBA against S. aureus better and identify 274 differentially expressed proteins upon LBA treatment, an isobaric tag was used for relative and absolute quantification-based quantitative proteomics. Combined with ultrastructural observations, results suggested that LBA inhibited S. aureus by disrupting cell wall and membrane integrity, regulating adenosine triphosphate binding cassette transporter expression, affecting cellular energy metabolism, attenuating S. aureus virulence and reducing infection, and decreasing the levels of proteins involved in stress and starvation responses. Quantitative real-time polymerase chain reaction analysis was used to validate the proteomic data. The results provide new insights into the inhibitory effects of LBA on S. aureus and suggest that LBA application may be a promising method to ensure food and pharmaceutical product safety.