Issue 6, 2021

Salt reduction in bread via enrichment of dietary fiber containing sodium and calcium

Abstract

The high intake of sodium and low intake of dietary fiber are two major dietary risk factors for preventable deaths worldwide, highlighting the need and implementations for developing health foods with low-salt/high-dietary fibers. Bread as a staple food contributes about 25% to the daily intake of sodium in many countries, and salt reduction in bread still remains a great technical challenge. In this study, we developed a simple method to reformulate the white bread in terms of reducing salt contents via dietary fiber fortification, while maintaining the taste and texture qualities. Low molecular weight water-extractable arabinoxylans (LMW-WEAX) as a soluble dietary fiber was first hydrated in salt water before dough mixing, leading to an inhomogeneous spatial distribution of sodium in bread and accelerating the release of sodium ions from crumbs, allowing 20% salt reduction in bread without impacting the salt perception. Data from the moisture content, crumb structure, water distribution, dough rheology and bread texture properties suggest that the pre-hydrated incorporation of LMW-WEAX mitigates the detrimental effect of dietary fiber on the dough and bread quality. The modulation of Ca2+ on the permeability of Na+ through the mucus layer and implication in salt enhancement of the bread were investigated. Results show that the pre-hydrated incorporation of WEAX containing Na+ and Ca2+ (1.0%) makes it possible to reduce 30% salt content in breads, which have implications in the large-scale production of low-salt/high-dietary fiber bread.

Graphical abstract: Salt reduction in bread via enrichment of dietary fiber containing sodium and calcium

Article information

Article type
Paper
Submitted
28 Nov 2020
Accepted
09 Feb 2021
First published
10 Feb 2021

Food Funct., 2021,12, 2660-2671

Salt reduction in bread via enrichment of dietary fiber containing sodium and calcium

Y. Li, K. Han, G. Feng, Z. Wan, G. Wang and X. Yang, Food Funct., 2021, 12, 2660 DOI: 10.1039/D0FO03126G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements