Issue 5, 2021

Digestive characteristics and peptide release from wheat embryo proteins in vitro

Abstract

Due to the scarcity of the data on digestion and metabolism of wheat embryo proteins WEP, a simulated gastrointestinal digestion (SGID) scheme in vitro was utilized to explain the protein hydrolysis and biological activity of WEP during the digestion process. WEP had a certain degree of resistance to gastric digestion, especially the protein with a molecular weight of 50 kDa. In all the samples, no visually intact protein band emerged in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) during the intestinal phase, which was consistent with a gradually increasing content of released free amino acids. Moreover, the resistant digestion peptides (the amino acid sequences were ISQFXX and GTVX) were identified at the end of the gastrointestinal digestion (GID) product by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Although the complete protein in the sample was degraded, the antioxidant activity was not negatively affected, rather it showed an increasing trend and maintained a higher level of activity. The amount of the β-sheet gradually increased as that of the α-helix declined, the random coil decreased, whereas no obvious change was noticed in β-turn content. The results provide a better understanding for optimal selection of peptide candidates for designing protein products in the food processing industry as well as for WEP digestion and metabolism in the human body.

Graphical abstract: Digestive characteristics and peptide release from wheat embryo proteins in vitro

Article information

Article type
Paper
Submitted
06 Dec 2020
Accepted
06 Feb 2021
First published
11 Feb 2021

Food Funct., 2021,12, 2257-2269

Digestive characteristics and peptide release from wheat embryo proteins in vitro

W. Chen, A. Liao, Y. Hou, L. Pan, G. Yu, J. Du, C. Yang, X. Li and J. Huang, Food Funct., 2021, 12, 2257 DOI: 10.1039/D0FO03193C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements