Issue 12, 2021

A more sustainable synthesis approach for cellulose acetate using the DBU/CO2 switchable solvent system

Abstract

Cellulose acetate is one of the most important cellulose derivatives and commercially mainly produced using the Acetic Acid Process, in which overstoichiometric amounts of acetic anhydride and concentrated acetic acid are used to obtain cellulose triacetate. A subsequent partial hydrolysis is necessary to achieve evenly substituted cellulose acetates with lower degrees of substitution. Homogeneous acetylations in ionic liquids or other cellulose dissolving solvent systems often offer milder conditions and the possibility of a one-step synthesis of cellulose acetates with lower degrees of substitution by simply adjusting the equivalents of the acetylation agent. Here, we show an efficient homogeneous cellulose acetylation process without the need of any additional catalyst or activation step using the DBU/CO2 switchable solvent system. Vinyl acetate was used as a more benign acetylation agent under mild conditions and straightforward recyclability of all employed components was demonstrated with high recycling ratios (87.0–98.9%). Less cellulose backbone degradation compared to a cellulose acetate sample synthesized by the Acetic Acid Process from the same cellulose source was shown by size exclusion chromatography (Mn = 35 kDa vs. 12 kDa), which resulted in improved mechanical properties of solvent casted foils. Other homogeneous procedures reported so far (e.g. in ionic liquids) reached lower degrees of substitution, needed additional catalysts, proved to be less advantageous in terms of recycling, or required more reactive acetylation agents. Our results thus demonstrate a cellulose acetylation method with full focus on sustainability, efficiency, and applicability, resulting in an E-factor of 1.92 for the overall process.

Graphical abstract: A more sustainable synthesis approach for cellulose acetate using the DBU/CO2 switchable solvent system

Supplementary files

Article information

Article type
Paper
Submitted
29 Apr 2021
Accepted
16 May 2021
First published
18 May 2021
This article is Open Access
Creative Commons BY-NC license

Green Chem., 2021,23, 4410-4420

A more sustainable synthesis approach for cellulose acetate using the DBU/CO2 switchable solvent system

J. Wolfs and M. A. R. Meier, Green Chem., 2021, 23, 4410 DOI: 10.1039/D1GC01508G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements