Issue 16, 2021

Integration of acetic acid catalysis with one-pot protic ionic liquid configuration to achieve high-efficient biorefinery of poplar biomass

Abstract

Recyclable biocatalysts and high-efficiency lignocellulose deconstruction are the crucial factors for cost-effective conversion of biomass into biofuels and bioproducts. Acetic acid-based catalytic hydrolysis of grassy lignocellulosic biomass presents a promising application because of its effectivity, recyclability, and other environmentally friendly features. However, this treatment is not as effective on woody biomass, such as poplar. One way to improve conversion performance of this process is to integrate it with other effective processes, such as pretreating biomass with protic ionic liquids (PILs) that have been shown to effectively solubilize lignin in reducing the recalcitrance of biomass to enzymatic deconstruction. In this work, an integrated acetic acid based one-pot ethanolamine acetate pretreatment (HAc–[EOA][OAc]) was developed for the efficient depolymerization of poplar polysaccharides. The configuration simultaneously removed ∼88% hemicellulose and selectively extracted up to ∼46% of the lignin from lignocellulosic biomass. HAc–[EOA][OAc] pretreated poplar yielded over 80% enzyme-hydrolyzed glucose that was attributed to an increase in the accessible surface area of cellulose to the hydrolytic enzymes. Analysis of the cellulose crystallinity and thermal decomposition profiles revealed that all pretreated samples have a higher cellulose crystallinity, indicating that amorphous cellulose had been removed during pretreatment. Conductor like screening model for real solvents (COSMO-RS) and Hansen solubility parameters (HSP) were used to provide insights into the mechanism of biomass pretreatment efficacy using both HAc and [EOA][OAc]. We found that a strong hydrogen-bonding and electrostatic misfit interaction between hemicellulose and HAc may explain the higher removal of hemicellulose during HAc pretreatment. Further, the close HSP values and COSMO-RS analysis indicate that [EOA][OAc] is a good lignin solvent, which leads to the higher delignification of biomass. This study demonstrates that the integration of IL with acid pretreatment is a promising strategy for conducting effective pretreatment on woody lignocellulose.

Graphical abstract: Integration of acetic acid catalysis with one-pot protic ionic liquid configuration to achieve high-efficient biorefinery of poplar biomass

Supplementary files

Article information

Article type
Paper
Submitted
15 May 2021
Accepted
25 Jun 2021
First published
30 Jul 2021
This article is Open Access
Creative Commons BY-NC license

Green Chem., 2021,23, 6036-6049

Integration of acetic acid catalysis with one-pot protic ionic liquid configuration to achieve high-efficient biorefinery of poplar biomass

K. Huang, M. Mohan, A. George, B. A. Simmons, Y. Xu and J. M. Gladden, Green Chem., 2021, 23, 6036 DOI: 10.1039/D1GC01727F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements