Issue 22, 2021

Second-sphere hydrogen-bonding enhances heterogeneous electrocatalytic CO2 to CO reduction by iron porphyrins in water

Abstract

Intense efforts are currently being devoted to discovering cost-effective catalysts for the selective reduction of carbon dioxide (CO2). Many advances have indeed been achieved in the design of molecular complexes containing second coordination chemical functionalities that have contributed to boosting the homogeneous electrocatalytic activity. The introduction of such chemical facets in heterogeneous catalysis is still lacking. Here, we report the electrocatalytic properties of a chemically modified electrode with a molecular iron-porphyrin catalyst holding urea functions (UrFe) in CO2 reduction, acting as a multipoint hydrogen bonding cleft to enhance CO2 binding. The immobilization of UrFe on multiwall carbon nanotubes (MWCNTs)/carbon paper (CP) allows the investigation of the catalytic performance in water. We found, herein, that the modified electrode displays excellent selectivity towards CO production in water, which is also acting as the sole proton source. Importantly, we observed one of the highest effective turnover frequency (eTOF) values (>21 s−1) at a potential of −0.78 V vs. RHE in comparison with similar modified electrode containing bare iron-porphyrin analogues. Our results therefore point to a remarkable gain in electrocatalytic performance of molecular catalysts at the surface of the electrodes with the added dimensionality of chemical functions operating as molecular clefts towards the binding and reduction of CO2.

Graphical abstract: Second-sphere hydrogen-bonding enhances heterogeneous electrocatalytic CO2 to CO reduction by iron porphyrins in water

Supplementary files

Article information

Article type
Paper
Submitted
16 Jul 2021
Accepted
11 Oct 2021
First published
11 Oct 2021

Green Chem., 2021,23, 8979-8987

Second-sphere hydrogen-bonding enhances heterogeneous electrocatalytic CO2 to CO reduction by iron porphyrins in water

C. Zhang, D. Dragoe, F. Brisset, B. Boitrel, B. Lassalle-Kaiser, W. Leibl, Z. Halime and A. Aukauloo, Green Chem., 2021, 23, 8979 DOI: 10.1039/D1GC02546E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements