The synergistic copper/ppm Pd-catalyzed hydrocarboxylation of alkynes with formic acid as a CO surrogate as well as a hydrogen source: an alternative indirect utilization of CO2†
Abstract
An unprecedented strategy has been developed involving the earth-abundant Cu-catalyzed hydrocarboxylation of alkynes with HCOOH to (E)-acrylic derivatives with high regio- and stereoselectivity via synergistic effects with ppm levels of a Pd catalyst. Both symmetrical and unsymmetrical alkynes bearing various functional groups were successfully hydrocarboxylated with HCOOH, and the modification of a pharmaceutical molecule exemplified the practicability of this process. This protocol employs HCOOH as both a CO surrogate and hydrogen donor with 100% atom economy and it can be viewed as an alternative approach for indirect CO2 utilization. Mechanistic investigations indicate a Cu/ppm Pd cooperative catalysis mechanism via alkenylcopper species as potential intermediates formed from Cu-hydride active catalytic species with HCOOH as a hydrogen source. This bimetallic system involving inexpensive Cu and trace Pd provides a reliable and efficient hydrocarboxylation method to access industrially useful acrylic derivatives with HCOOH as a hydrogen source, and it provides novel clues for optimizing other Cu–H-related co-catalytic systems.