Inertial focusing and zeta potential measurements of single-nanoparticles using octet-nanochannels†
Abstract
Capture-to-translocation dynamics control is an important issue for single-particle and -molecule analyses by resistive pulse waveforms. Here, we report on regulated motions for accurate zeta-potential assessments of single nanoscale objects passing through an octet-nanochannel. We observed ionic spike signals consisting of eight consecutive sub-pulses signifying the ion blockage at the eight sensing zones in series upon electrophoretic translocation of individual nanoparticles. We find an exponential decrease to saturation of the channel-to-channel translocation duration as a nanobead moves forward, reflecting the more restricted radial motion degrees of freedom via inertial effects at the downstream side of the octet channel. This finding enabled a protocol for single-nanoparticle zeta potential estimation impervious to the uncertainty stemming from the stochastic nature of the translocation dynamics. The multi-channel approach presented in this study may be used as a useful tool for analyzing particles and molecules of variable sizes.