Issue 23, 2021

Nanoarchitectonics of metal organic frameworks and PEDOT layer-by-layer electrodes for boosting oxygen reduction reaction

Abstract

We present a strategy for the integration of three building blocks in a functional interfacial nanoarchitecture in order to fabricate composite films with improved features towards the electrochemical oxygen reduction reaction (ORR). Firstly, multilayer films of polyethyleneimine (PEI) and poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) complex are generated using the layer-by-layer method by making use of the electrostatic interactions between the cationic polyelectrolyte and the negatively charged colloidal polymeric complex. Film assembly shows an exponential growth up to 10 bilayers, with a sharp increase in the amount of deposited material above 4 bilayers. While the electrical connection through the LbL assembled films up to 10 bilayers is efficient, optimal electrochemical performance of the modified electrodes towards the ORR in neutral solutions occurs for 4 bilayers, and then decreases gradually for 6 and 10 bilayers. Subsequently, in order to explore the effect of MOF inclusion on this architecture, Zn-based ZIF-8 nanocrystallites were deposited on the electrodes previously modified with LbL assemblies of 4-bilayers. The micro/mesoporosity, thus added to the films, resulted in an improvement in the ORR performance which can be understood by considering the already demonstrated ability of ZIF-8 for selective oxygen adsorption from solution. Furthermore, ZIF-8 inclusion does not interfere with the ionic transport through the composite film, which is crucial for efficient electrocatalysis. The hereby presented study exemplifies a simple approach for the fabrication and optimization of complex functional interfaces with improved activity towards ORR in neutral pH aqueous environments.

Graphical abstract: Nanoarchitectonics of metal organic frameworks and PEDOT layer-by-layer electrodes for boosting oxygen reduction reaction

Supplementary files

Article information

Article type
Paper
Submitted
20 Aug 2021
Accepted
29 Sep 2021
First published
29 Sep 2021
This article is Open Access
Creative Commons BY-NC license

Mater. Adv., 2021,2, 7731-7740

Nanoarchitectonics of metal organic frameworks and PEDOT layer-by-layer electrodes for boosting oxygen reduction reaction

G. E. Fenoy, M. Rafti, W. A. Marmisollé and O. Azzaroni, Mater. Adv., 2021, 2, 7731 DOI: 10.1039/D1MA00747E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements