Issue 3, 2021

Synthesis and biological evaluation of a monocyclic Fc-binding antibody-recruiting molecule for cancer immunotherapy

Abstract

Antibody-recruiting molecules (ARMs) are bispecific molecules composed of an antibody-binding motif and a target-binding motif that redirect endogenous antibodies to target cells to elicit immune responses. To enhance the translational potential of ARMs, it is crucial to design antibody/target-binding motifs that have strong affinity and are easy to synthesize. Here, we synthesized a novel Fc-binding ARM (Fc-ARM) that targets folate receptor (FR)-positive cancer cells, Reo-3, using a recently developed monocyclic peptide 15-Lys8Leu, which binds strongly to the Fc region of an antibody. Reo-3 bound to the Fc region of the antibody with a Kd of 5.8 nM, and recruited a clinically used antibody mixture to attack FR-positive IGROV-1 cells as efficiently as Fc-ARM2, in which a bicyclic Fc-binding peptide was used. These results indicate that 15-Lys8Leu, which can be synthesized readily, is suitable for various applications including the development of Fc-ARMs.

Graphical abstract: Synthesis and biological evaluation of a monocyclic Fc-binding antibody-recruiting molecule for cancer immunotherapy

Supplementary files

Article information

Article type
Research Article
Submitted
02 Oct 2020
Accepted
10 Jan 2021
First published
21 Jan 2021

RSC Med. Chem., 2021,12, 406-409

Synthesis and biological evaluation of a monocyclic Fc-binding antibody-recruiting molecule for cancer immunotherapy

K. Sasaki, K. Muguruma, R. Osawa, A. Fukuda, A. Taniguchi, A. Kishimura, Y. Hayashi, T. Mori and Y. Katayama, RSC Med. Chem., 2021, 12, 406 DOI: 10.1039/D0MD00337A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements