Issue 2, 2021

2D PtS nanorectangles/g-C3N4 nanosheets with a metal sulfide–support interaction effect for high-efficiency photocatalytic H2 evolution

Abstract

Cocatalyst design is a key approach to acquire high solar-energy conversion efficiency for photocatalytic hydrogen evolution. Here a new in situ vapor-phase (ISVP) growth method is developed to construct the cocatalyst of 2D PtS nanorectangles (a length of ∼7 nm, a width of ∼5 nm) on the surface of g-C3N4 nanosheets. The 2D PtS nanorectangles/g-C3N4 nanosheets (PtS/CN) show an unusual metal sulfide–support interaction (MSSI), which is evidenced by atomic resolution HAADF-STEM, synchrotron-based GIXRD, XPS and DFT calculations. The effect of MSSI contributes to the optimization of geometrical structure and energy-band structure, acceleration of charge transfer, and reduction of hydrogen adsorption free energy of PtS/CN, thus yielding excellent stability and an ultrahigh photocatalytic H2 evolution rate of 1072.6 μmol h−1 (an apparent quantum efficiency of 45.7% at 420 nm), up to 13.3 and 1532.3 times by contrast with that of Pt nanoparticles/g-C3N4 nanosheets and g-C3N4 nanosheets, respectively. This work will provide a new platform for designing high-efficiency photocatalysts for sunlight-driven hydrogen generation.

Graphical abstract: 2D PtS nanorectangles/g-C3N4 nanosheets with a metal sulfide–support interaction effect for high-efficiency photocatalytic H2 evolution

Supplementary files

Article information

Article type
Communication
Submitted
22 Oct 2020
Accepted
26 Nov 2020
First published
26 Nov 2020

Mater. Horiz., 2021,8, 612-618

Author version available

2D PtS nanorectangles/g-C3N4 nanosheets with a metal sulfide–support interaction effect for high-efficiency photocatalytic H2 evolution

B. Lin, Y. Zhou, B. Xu, C. Zhu, W. Tang, Y. Niu, J. Di, P. Song, J. Zhou, X. Luo, L. Kang, R. Duan, Q. Fu, H. Liu, R. Jin, C. Xue, Q. Chen, G. Yang, K. Varga, Q. Xu, Y. Li, Z. Liu and F. Liu, Mater. Horiz., 2021, 8, 612 DOI: 10.1039/D0MH01693D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements