Issue 7, 2021

Transduction between magnets and ions

Abstract

A time-varying magnetic field generates an electric field in an electrolyte, in which ions move. This magnetoionic transduction is studied here in several arrangements. The electrolyte is a hydrogel containing mobile ions, and is in contact with two metallic electrodes. An alternating electric current applied to a metal coil generates a time-varying magnetic field. In response, ions in the hydrogel move. The two hydrogel/electrode interfaces are non-faradaic and accumulate excess ions of opposite signs, which attract and repel electrons in the two electrodes. When the two electrodes are connected to a voltmeter of internal resistance much larger than that of the hydrogel, an open-circuit voltage is measured, linear in the alternating current applied to the metal coil. A metal coil and a hydrogel coil form an ionotronic transformer, in which an alternating electric current in the metal coil induces an alternating ionic current in the hydrogel coil. Such a transformer can be used for noncontact power transmission, with a voltage high enough to turn on many light-emitting diodes in series. The hydrogel is soft, and readily conforms to a curved surface, such as a glove on a human hand. Motion of the hand can be detected by noncontact magnetoionic transduction.

Graphical abstract: Transduction between magnets and ions

Supplementary files

Article information

Article type
Communication
Submitted
11 Mar 2021
Accepted
02 Jun 2021
First published
03 Jun 2021

Mater. Horiz., 2021,8, 1959-1965

Author version available

Transduction between magnets and ions

Y. Wang, S. Xie, Y. Bai, Z. Suo and K. Jia, Mater. Horiz., 2021, 8, 1959 DOI: 10.1039/D1MH00418B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements