Issue 2, 2021

Theoretical insights into C–H bond activation of methane by transition metal clusters: the role of anharmonic effects

Abstract

In heterogeneous catalysis, the determination of active phases has been a long-standing challenge, as materials' properties change under operational conditions (i.e. temperature (T) and pressure (p) in an atmosphere of reactive molecules). As a first step towards materials design for methane activation, we study the T and p dependence of the composition, structure, and stability of metal oxide clusters in a reactive atmosphere at thermodynamic equilibrium using a prototypical model catalyst having wide practical applications: free transition metal (Ni) clusters in a combined oxygen and methane atmosphere. A robust methodological approach is employed, where the starting point is systematic scanning of the potential energy surface (PES) to obtain the global minimum structures using a massively parallel cascade genetic algorithm (cGA) at the hybrid density functional level. The low energy clusters are further analyzed to estimate their thermodynamic stability at realistic T, pO2 and pCH4 using ab initio atomistic thermodynamics (aiAT). To incorporate the anharmonicity in the vibrational free energy contribution to the configurational entropy, we evaluate the excess free energy of the clusters numerically by a thermodynamic integration method with ab initio molecular dynamics (aiMD) simulation inputs. By analyzing a large dataset, we show that the conventional harmonic approximation miserably fails for this class of materials, and capturing the anharmonic effects on the vibration free energy contribution is indispensable. The latter has a significant impact on detecting the activation of the C–H bond, while the harmonic infrared spectrum fails to capture this, due to the wrong prediction of the vibrational modes.

Graphical abstract: Theoretical insights into C–H bond activation of methane by transition metal clusters: the role of anharmonic effects

Supplementary files

Article information

Article type
Paper
Submitted
13 Aug 2020
Accepted
16 Nov 2020
First published
16 Nov 2020
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2021,3, 575-583

Theoretical insights into C–H bond activation of methane by transition metal clusters: the role of anharmonic effects

P. Bhumla, M. Kumar and S. Bhattacharya, Nanoscale Adv., 2021, 3, 575 DOI: 10.1039/D0NA00669F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements