Issue 6, 2021

Hybrid chemoenzymatic heterogeneous catalyst prepared in one step from zeolite nanocrystals and enzyme–polyelectrolyte complexes

Abstract

The combination of inorganic heterogeneous catalysts and enzymes, in so-called hybrid chemoenzymatic heterogeneous catalysts (HCEHCs), is an attractive strategy to effectively run chemoenzymatic reactions. Yet, the preparation of such bifunctional materials remains challenging because both the inorganic and the biological moieties must be integrated in the same solid, while preserving their intrinsic activity. Combining an enzyme and a zeolite, for example, is complicated because the pores of the zeolite are too small to accommodate the enzyme and a covalent anchorage on the surface is often ineffective. Herein, we developed a new pathway to prepare a nanostructured hybrid catalyst built from glucose oxidase and TS-1 zeolite. Such hybrid material can catalyse the in situ biocatalytic formation of H2O2, which is subsequently used by the zeolite to trigger the epoxidation of allylic alcohol. Starting from an enzymatic solution and a suspension of zeolite nanocrystals, the hybrid catalyst is obtained in one step, using a continuous spray drying method. While enzymes are expectedly unable to resist the conditions used in spray drying (temperature, shear stress, etc.), we leverage on the preparation of “enzyme–polyelectrolyte complexes” (EPCs) to increase the enzyme stability. Interestingly, the use of EPCs also prevents enzyme leaching and appears to stabilize the enzyme against pH changes. We show that the one-pot preparation by spray drying gives access to hybrid chemoenzymatic heterogeneous catalysts with unprecedented performance in the targeted chemoenzymatic reaction. The bifunctional catalyst performs much better than the two catalysts operating as separate entities. We anticipate that this strategy could be used as an adaptable method to prepare other types of multifunctional materials starting from a library of functional nanobuilding blocks and biomolecules.

Graphical abstract: Hybrid chemoenzymatic heterogeneous catalyst prepared in one step from zeolite nanocrystals and enzyme–polyelectrolyte complexes

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
08 Oct 2020
Accepted
30 Jan 2021
First published
08 Feb 2021
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2021,3, 1646-1655

Hybrid chemoenzymatic heterogeneous catalyst prepared in one step from zeolite nanocrystals and enzyme–polyelectrolyte complexes

M. Van der Verren, V. Smeets, A. vander Straeten, C. Dupont-Gillain and D. P. Debecker, Nanoscale Adv., 2021, 3, 1646 DOI: 10.1039/D0NA00834F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements