Issue 3, 2021

Risk assessment on-a-chip: a cell-based microfluidic device for immunotoxicity screening

Abstract

Nanomaterials are widely used in industrial and clinical settings due to their unique physical and chemical properties. However, public health and environmental concerns have emerged owing to their undesired toxicity and ability to trigger immune responses. This paper presents the development of a microfluidic-based cell biochip device that enables the administration of nanoparticles under laminar flow to cells of the immune system to assess their cytotoxicity. The exposure of human B lymphocytes to 10 nm silver nanoparticles under fluid flow led to a 3-fold increase in toxicity compared to static conditions, possibly indicating enhanced cell–nanoparticle interactions. To investigate whether the administration under flow was the main contributing factor, we compared and validated the cytotoxicity of the same nanoparticles in different platforms, including the conventional well plate format and in-house fabricated microfluidic devices under both static and dynamic flow conditions. Our results suggest that commonly employed static platforms might not be well-suited to perform toxicological screening of nanomaterials and may lead to an underestimation of cytotoxic responses. The simplicity of the developed flow system makes this setup a valuable tool to preliminary screen nanomaterials.

Graphical abstract: Risk assessment on-a-chip: a cell-based microfluidic device for immunotoxicity screening

Supplementary files

Article information

Article type
Paper
Submitted
14 Oct 2020
Accepted
17 Dec 2020
First published
18 Dec 2020
This article is Open Access
Creative Commons BY license

Nanoscale Adv., 2021,3, 682-691

Risk assessment on-a-chip: a cell-based microfluidic device for immunotoxicity screening

A. Oddo, M. Morozesk, E. Lombi, T. B. Schmidt, Z. Tong and N. H. Voelcker, Nanoscale Adv., 2021, 3, 682 DOI: 10.1039/D0NA00857E

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements