Issue 17, 2021

Near-IR emission of InGaN quasi-quantum dots on non-polar GaN nanowire structures

Abstract

In group III-nitride based semiconductor structures, the incorporation of high-indium-composition InGaN has been severely limited by extremely inefficient strain-induced polarization fields and prohibitively large defect densities. So far, there is no clear approach to solve this issue. Here, we have shown a new approach to incorporate high concentrations of indium in the InGaN structure by using a non-polar quasi-quantum dot heterostructure. This unique epitaxial growth was achieved by integrating a 1-dimensional nanowire and a 0-dimensional quantum dot structure using an MOCVD system. The formation of a high-efficiency quantum-sliding heterostructure and high-quality nanowire structure was confirmed by FE-SEM and TEM measurements. Furthermore, it has been suggested that such a quantum-dot structure can dramatically improve radiative recombination through a new sliding bandgap mechanism. We also found that non-polar quantum dots can not only incorporate more indium than conventional multi-quantum well structures grown on the nanowire structure, but also significantly improve crystalline quality. The PL results verified that the wavelength of quantum dots fabricated on the nanowire structure can easily shift up to 913 nm. The first demonstration in the integration of nanowire and quantum dot structures will open a new avenue to break through the limitations of high indium incorporation in photonic semiconductor systems.

Graphical abstract: Near-IR emission of InGaN quasi-quantum dots on non-polar GaN nanowire structures

Article information

Article type
Paper
Submitted
10 May 2021
Accepted
08 Jul 2021
First published
09 Jul 2021
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2021,3, 5036-5045

Near-IR emission of InGaN quasi-quantum dots on non-polar GaN nanowire structures

D. Um, Y. Ra, J. Park, G. Hong and C. Lee, Nanoscale Adv., 2021, 3, 5036 DOI: 10.1039/D1NA00338K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements