Issue 24, 2021

Morphology effect of ceria supports on gold nanocluster catalyzed CO oxidation

Abstract

The interfacial perimeter is generally viewed as the catalytically active site for a number of chemical reactions over oxide-supported nanogold catalysts. Here, well-defined CeO2 nanocubes, nanorods and nanopolyhedra are chosen to accommodate atomically precise clusters (e.g. Au25(PET)18) to give different Au cluster–CeO2 interfaces. TEM images show that Au particles of ∼1.3 nm are uniformly anchored on the ceria surface after annealing in air at 120 °C, which can rule out the size hierarchy of nanogold in CO oxidation studies. The gold nanoclusters are only immobilized on the CeO2(200) facet in Au25/CeO2-C, while they are selectively loaded on CeO2(002) and (111) in the Au25/CeO2-R and Au25/CeO2-P catalysts. X-ray photoelectron spectroscopy (XPS) and in situ infrared CO adsorption experiments clearly demonstrate that the gold species in the Au25/CeO2 samples are similar and partially charged (Auδ+, where 0 < δ < 1). It is observed that the catalytic activity decreases in the order of Au/CeO2-R ≈ Au/CeO2-P > Au/CeO4-C in the CO oxidation. And the apparent activation energy over Au25/CeO2-C (60.5 kJ mol−1) is calculated to be about two-fold of that over the Au25/CeO2-R (28.6 kJ mol−1) and Au25/CeO2-P (31.3 kJ mol−1) catalysts. It is mainly tailored by the adsorbed [O] species on the ceria surface, namely, Au25/CeO2(002) and Au25/CeO2(111) which were more active than the Au25/CeO2(200) system in the CO oxidation. These insights at the molecular level may provide guidelines for the design of new oxide-supported nanogold catalysts for aerobic oxidations.

Graphical abstract: Morphology effect of ceria supports on gold nanocluster catalyzed CO oxidation

Article information

Article type
Paper
Submitted
10 Sep 2021
Accepted
05 Oct 2021
First published
07 Oct 2021
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2021,3, 7002-7006

Morphology effect of ceria supports on gold nanocluster catalyzed CO oxidation

Z. Li, X. Zhang, Q. Shi, X. Gong, H. Xu and G. Li, Nanoscale Adv., 2021, 3, 7002 DOI: 10.1039/D1NA00680K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements