Nanowire networks: how does small-world character evolve with dimensionality?†
Abstract
Networks of nanowires are currently under consideration for a wide range of electronic and optoelectronic applications. Nanowire devices are usually made by sequential deposition, which inevitably leads to stacking of the wires on top of one another. Here we demonstrate the effect of stacking on the topology of the resulting networks. We compare perfectly 2D networks with quasi-3D networks, and compare both nanowire networks to the corresponding Watts Strogatz networks, which are standard benchmark systems. By investigating quantities such as clustering, path length, modularity, and small world propensity we show that the connectivity of the quasi-3D networks is significantly different to that of the 2D networks, a result which may have important implications for applications of nanowire networks.